
Computer Graphics

3 - Transformation 1

Yoonsang Lee

Spring 2022

Topics Covered

• 2D Transformation

– Scale, rotation, translation…

• Composing Transformations & Homogeneous

Coordinates

• 3D Cartesian Coordinate System

2D Transformations

What is Transformation?

• Geometric Transformation - 기하변환

– One-to-one mapping (function) of a set having some

geometric structure to itself or another such set.

– More easily, “moving a set of points”

• Examples:

Where are Transformations used?

• Movement

• Image/object manipulation

• Viewing, projection transform

Transformation

• “Moving a set of points”

– Transformation T maps any input vector v in the vector

space S to T(v).

Linear Transformation

• One way to define a transformation is by matrix

multiplication:

• This is called a linear transformation because a

matrix multiplication represents a linear mapping.

2D Linear Transformation

• 2x2 matrices represent 2D linear transformations

such as:

– uniform scaling

– non-uniform scaling

– rotation

– shearing

– reflection

2D Linear Trans. – Uniform Scale

2x2 scale matrix

• Uniformly shrinks or enlarges both in x and y

directions.

S p = p'

2D Linear Trans. – Nonuniform Scale

• Non-uniformly shrinks or enlarges in x and y

directions.

Rotation

: Rotation matrix

2D Linear Trans. – Rotation

(Rotate 30
deg ccw)

-0.5

• Rotation can be written in matrix multiplication, so

it's also a linear transformation.

– Note that positive angle means CCW rotation.

• Let’s think about what the numbers in the matrix

means.

Numbers in Matrices: Scale, Rotation

[1,0]T

[0,1]T

[r1,0]T

[0,r2]
T

r1 0

0 r2

scaling

Canonical basis vectors: unit vectors

pointing in the direction of the axes

of a Cartesian coordinate system.

1st & 2nd basis vector of the

transformed coordinates

Numbers in Matrices: Scale, Rotation

• Column vectors of a matrix is the basis vectors of

the column space (range) of the matrix.

– Column space of a matrix: The span (a set of all possible

linear combinations) of its column vectors.

[1,0]T

[0,1]T

[cos, sin]T



[-sin, cos]T

cos -sin

sin cos

rotation

2D Linear Trans. – Reflection

• Reflection can be considered as a special case of

non-uniform scale.

2D Linear Trans. – Shear

• "Push things sideways"

Identity Matrix

• "Doing nothing"

[Practice]

Uniform

Scale

import glfw

from OpenGL.GL import *

import numpy as np

def render(M):

glClear(GL_COLOR_BUFFER_BIT)

glLoadIdentity()

draw cooridnate

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex2fv(np.array([0.,0.]))

glVertex2fv(np.array([1.,0.]))

glColor3ub(0, 255, 0)

glVertex2fv(np.array([0.,0.]))

glVertex2fv(np.array([0.,1.]))

glEnd()

draw triangle - p'=Mp

glBegin(GL_TRIANGLES)

glColor3ub(255, 255, 255)

glVertex2fv(M @ np.array([0.0,0.5]))

glVertex2fv(M @ np.array([0.0,0.0]))

glVertex2fv(M @ np.array([0.5,0.0]))

glEnd()

[Practice]

Uniform

Scale

def main():

if not glfw.init():

return

window = glfw.create_window(640,640, "2D

Trans", None,None)

if not window:

glfw.terminate()

return

glfw.make_context_current(window)

while not glfw.window_should_close(window):

glfw.poll_events()

M = np.array([[2.,0.],

[0.,2.]])

render(M)

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()

[Practice] Animate It!

def main():

if not glfw.init():

return

window = glfw.create_window(640,640,"2D Trans", None,None)

if not window:

glfw.terminate()

return

glfw.make_context_current(window)

set the number of screen refresh to wait before calling glfw.swap_buffer().

if your monitor refresh rate is 60Hz, the while loop is repeated every 1/60 sec

glfw.swap_interval(1)

while not glfw.window_should_close(window):

glfw.poll_events()

get the current time, in seconds

t = glfw.get_time()

s = np.sin(t)

M = np.array([[s,0.],

[0.,s]])

render(M)

glfw.swap_buffers(window)

glfw.terminate()

[Practice] Nonuniform Scale, Rotation,

Reflection, Shear
while not glfw.window_should_close(window):

glfw.poll_events()

t = glfw.get_time()

nonuniform scale

s = np.sin(t)

M = np.array([[s,0.],

[0.,s*.5]])

rotation

th = t

M = np.array([[np.cos(th), -np.sin(th)],

[np.sin(th), np.cos(th)]])

reflection

M = np.array([[-1.,0.],

[0.,1.]])

shear

a = np.sin(t)

M = np.array([[1.,a],

[0.,1.]])

identity matrix

M = np.identity(2)

render(M)

glfw.swap_buffers(window)

Quiz #1

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

2D Translation

• Translation is the simplest transformation:

• Inverse:

t
P

P’

[Practice] Translation
def render(u):

...

glBegin(GL_TRIANGLES)

glColor3ub(255, 255, 255)

glVertex2fv(np.array([0.0,0.5]) + u)

glVertex2fv(np.array([0.0,0.0]) + u)

glVertex2fv(np.array([0.5,0.0]) + u)

glEnd()

def main():

...

while not glfw.window_should_close(window):

glfw.poll_events()

t = glfw.get_time()

u = np.array([np.sin(t), 0.])

render(u)

...

Is translation linear transformation?

• No, because it cannot be represented using a simple

matrix multiplication.

• We can express it using vector addition:

• Combining with linear transformation:

Affine transformation

Let’s check again

• Linear transformation

– Scaling, rotation, reflection, shearing

– Represented as matrix multiplications

• Translation

– Not a linear transformation

– Can be expressed using vector addition

Affine Transformation

• Linear transformation + Translation

• Preserves lines

• Preserves parallel lines

• Preserves ratios of distance along a line

• → These properties are inherited from linear

transformations.

Rigid Transformation

• Rotation + Translation

• Preserves distances between all points

• Preserves cross product for all vectors

, where R is a rotation matrix.

[Practice] Affine Transformation
def render(M, u):

...

glBegin(GL_TRIANGLES)

glColor3ub(255, 255, 255)

glVertex2fv(M @ np.array([0.0,0.5]) + u)

glVertex2fv(M @ np.array([0.0,0.0]) + u)

glVertex2fv(M @ np.array([0.5,0.0]) + u)

glEnd()

def main():

...

while not glfw.window_should_close(window):

glfw.poll_events()

t = glfw.get_time()

th = t

R = np.array([[np.cos(th), -np.sin(th)],

[np.sin(th), np.cos(th)]])

u = np.array([np.sin(t), 0.])

render(R, u)

...

Quiz #2

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Composing Transformations &

Homogeneous Coordinates

Composing Transformations

• Move an object, then move it some more

• Composing 2D linear transformations just works

by 2x2 matrix multiplication

Order Matters!

• Note that matrix

multiplication is associative,

but not commutative.

• As a result, the order of

transforms is very

important.

S

R

p

p'=Sp

p'=RSp

p

p'=Rp

p'=SRp

[Practice] Composition

def main():

...

while not glfw.window_should_close(window):

glfw.poll_events()

S = np.array([[1.,0.],

[0.,2.]])

th = np.radians(60)

R = np.array([[np.cos(th), -np.sin(th)],

[np.sin(th), np.cos(th)]])

u = np.zeros(2)

compare results of these two lines

render(R @ S, u) # p'=RSp

render(S @ R, u) # p'=SRp

...

Problems when handling Translation as

Vector Addition

• Cannot treat linear transformation (rotation,

scale,…) and translation in a consistent manner.

• Composing affine transformations is complicated

• We need a cleaner way!

Homogeneous coordinates

Homogeneous Coordinates

• Key idea: Represent 2D points in 3D coordinate space

• Extra component w for vectors, extra row/column for
matrices

– For points, can always keep w = 1

– 2D point [x, y]T → 3D point [x, y, 1]T.

• 2D linear transformations are represented as:

Homogeneous Coordinates

• 2D translations are represented as:

• 2D affine transformations are represented as:

linear part translational part

• Composing affine transformations just works by

3x3 matrix multiplication

Homogeneous Coordinates

2x2 2x12x12x2

Homogeneous Coordinates

• Composing affine transformations just works by

3x3 matrix multiplication

• Much cleaner

2x2 2x1 2x12x2 2x1

[Practice] Homogeneous Coordinates

def render(M):

...

glBegin(GL_TRIANGLES)

glColor3ub(255, 255, 255)

glVertex2fv((M @ np.array([.0,.5,1.]))[:-1])

glVertex2fv((M @ np.array([.0,.0,1.]))[:-1])

glVertex2fv((M @ np.array([.5,.0,1.]))[:-1])

glEnd()

[Practice] Homogeneous Coordinates
def main():

...

while not glfw.window_should_close(window):

glfw.poll_events()

rotate 60 deg about z axis

th = np.radians(60)

R = np.array([[np.cos(th), -np.sin(th),0.],

[np.sin(th), np.cos(th),0.],

[0., 0., 1.]])

translate by (.4, .1)

T = np.array([[1.,0.,.4],

[0.,1.,.1],

[0.,0.,1.]])

render(R) # p'=Rp

render(T) # p'=Tp

render(T @ R) # p'=TRp

render(R @ T) # p'=RTp

...

Summary: Homogeneous Coordinates in 2D

• Use (x,y,1)T instead of (x,y)T for 2D points

• Use 3x3 matrices instead of 2x2 matrices for 2D

linear transformations

• Use 3x3 matrices instead of vector additions for

2D translations

• → We can treat linear transformations and

translations in a consistent manner!

Quiz #3

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

3D Cartesian Coordinate

System

Now, Let’s go to the 3D world!

y

x

z?

x

y

z?

• Coordinate system (좌표계)

– Cartesian coordinate system (직교좌표계)

Positive rotation

direction

counterclockwise about the axis of

rotation

clockwise about the axis of

rotation

Used in… OpenGL, Maya, Houdini,

AutoCAD, ...

Standard for Physics & Math

DirectX, Unity, Unreal, …

Two Types of 3D Cartesian Coordinate Systems
What we’re using

Next Time

• Lab for this lecture (next Monday):

– Lab assignment 3

• Next lecture (next Wednesday):

– 4 - Transformation 2

• Acknowledgement: Some materials come from the lecture slides of

– Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cgi

– Prof. Steve Marschner, Cornell Univ., http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

