Computer Graphics

3 - Transformation 1

Yoonsang Lee
Spring 2022



Topics Covered

o 2D Transformation

— Scale, rotation, translation...

* Composing Transformations & Homogeneous
Coordinates

» 3D Cartesian Coordinate System



2D Transformations



What 1s Transformation?

« Geometric Transformation - 7|5} B &t

— One-to-one mapping (function) of a set having some
geometric structure to itself or another such set.

— More easily, “moving a set of points”

« Examples:

ey 7

Translate Rotate Scale Shear Reflect




Where are Transformations used?




Transformation

* “Moving a set of points”
— Transformation T maps any input vector v in the vector
space S to T(v).

S - {T(v)|veS)




L_inear Transformation

* One way to define a transformation is by matrix
multiplication:

T(v)=Mv

 This is called a linear transformation because a
matrix multiplication represents a linear mapping.

T(au+v)=al(u)+T(v)
M- (au+ v) =aMu+ Mv



2D Linear Transformation

e 2X2 matrices represent 2D linear transformations
such as:
— uniform scaling
— non-uniform scaling
— rotation
— shearing
— reflection



2D Linear Trans. — Uniform Scale

 Uniformly shrinks or enlarges both in x and y
directions.

ST

: T
/ oSt |yl sy
P

2x2 scale matrix S = p




2D Linear Trans. — Nonuniform Scale

* Non-uniformly shrinks or enlarges in x and y

directions.

Sx

0

0

Sy

Sy
SyY

A

1.5

0.8




Rotation

(cosS, sinS)

(1,0)

X

cosd -smné

snéd cosdé

‘(0,1)

(-sin&, cosE)

S,

: Rotation matrix



2D Linear Trans. — Rotation

 Rotation can be written in matrix multiplication, so
It's also a linear transformation.

— Note that positive angle means CCW rotation.

cos) —sinf| |x| |xcosl —ysinb
sinf cosf | |y| |xsinf + ycosb

A 0.866 -0.5
0.0 0.866

(Rotate 30
deg ccw)




Numbers in Matrices: Scale, Rotation

[ et’s think about what the numbers in the matrix
mneans.

2] )
scaling

[1,0]T [r1,0]"
Canonical basis vectors: unit vectors 15t & 27¢ pbasis vector of the
pointing in the direction of the axes transformed coordinates

of a Cartesian coordinate system.



Numbers in Matrices: Scale, Rotation

[cose ]
sin®
[0,1]"

—

rotation v [cos®, sinf]"
0 .

[1.0]"

 Column vectors of a matrix Is the basis vectors of
the column space (range) of the matrix.

— Column space of a matrix: The span (a set of all possible
linear combinations) of its column vectors.



2D Linear Trans. — Reflection

 Reflection can be considered as a special case of
non-uniform scale.




2D Linear Trans. — Shear

 "Push things sideways"

.
_O 1_

x
Y

e a,y_




Identity Matrix

 "Doing nothing"

0] [x T
1_

1
0




[Practice] import glfu

from OpenGL.GL import *

Uniform import numpy as np
SCa|e def render (M) :

glClear (GL _COLOR BUFFER BIT)
glLoadIdentity ()

# draw cooridnate
glBegin (GL LINES)

glColor3ub (255, 0, 0)
glVertex2fv(np.array([0.,0.]))
glVertex2fv(np.array([1.,0.]))
glColor3ub (0, 255, 0)
glVertex2fv(np.array([0.,0.]))
glVertex2fv(np.array([0.,1.]))
glEnd ()

# draw triangle - p'=Mp
glBegin (GL TRIANGLES)

glColor3ub (255, 255, 255)
glVertex2fv (M np.array([0.0,0.5]))
glVertex2fv (M np.array([0.0,0.0]))
glVertex2fv (M np.array([0.5,0.0]))
alEnd ()



[Practice] def ma:n0:

] if not glfw.init():
Uniform return
window = glfw.create window (640,640, "2D
SCale Trans", None,None) a
if not window:
glfw.terminate ()
return
glfw.make context current (window)

B3 Tansformaton - o0 x while not glfw.window should close(window) :
glfw.poll events()

M = np.array([[2.,0.],
[0.,2.]])
render (M)

glfw.swap buffers(window)

glfw.terminate ()

if name == " _main_ "

main ()



[Practice] Animate It!

def main():
if not glfw.init():
return
window = glfw.create window(640,640,"2D Trans", None,None)
if not window:
glfw.terminate ()
return
glfw.make context current (window)

# set the number of screen refresh to wait before calling glfw.swap buffer().
# 1f your monitor refresh rate is 60Hz, the while loop is repeated every 1/60 sec
glfw.swap interval (1)

while not glfw.window should close(window) :
glfw.poll events()

# get the current time, in seconds
t = glfw.get_time()

s np.sin(t)
M = np.array([[s,0.],

[0.,s]1])
render (M)

glfw.swap buffers(window)
glfw.terminate ()



[Practice] Nonuniform Scale, Rotation,
Reflection, Shear

while not glfw.window should close(window) :
glfw.poll events()
t = glfw.get time()

# nonuniform scale

S = np.sin(t)
M = np.array([[s,0.1]1,
[0.,s*.5]11])
# rotation
th = t
M = np.array([[np.cos(th), -np.sin(th)],
[np.sin(th), np.cos(th)]])
# reflection
M = np.array([[-1.,0.1,
[0.,1.1]1)
# shear
a = np.sin(t)
M = np.array([[1.,al,

[0.,1.11)

# identity matrix
M = np.identity(2)

render (M)
glfw.swap buffers (window)



Quiz #1

* Go to https://www.slido.com/
 Join #cg-ys
* Click “Polls”

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked for “attendance”.


https://www.slido.com/

2D Translation

 Translation is the simplest transformation:
T'(v) =v+u

* |Inverse:
T ' (v)=v—u

O



[Practice] Translation

def

def

render (u) :

t ...

glBegin (GL TRIANGLES)

glColor3ub (255, 255, 255)
glVertex2fv(np.array([0.0,0.5]) + u)
glVertex2fv(np.array([0.0,0.0]) + u)
glVertex2fv(np.array([0.5,0.0]) + u)
glEnd ()

main () :

#

while not glfw.window should close(window) :

glfw.poll events()
t = glfw.get time()

u = np.array([np.sin(t), 0.])
render (u)
#



Is translation linear transformation?

No, because It cannot be represented using a simple
matrix multiplication.

We can express It using vector addition:
T(v)=v+u

« Combining with linear transformation:
T(v)=Mv+u

=) Affine transformation



Let’s check again

 Linear transformation
— Scaling, rotation, reflection, shearing
— Represented as matrix multiplications

T(v)=Mv

 Translation
— Not a linear transformation
— Can be expressed using vector addition

T(v)=v+u



Affine Transformation

Linear transformation + Translation
T(v)=Mv+u

* Preserves lines
* Preserves parallel lines

* Preserves ratios of distance along a line

* — These properties are inherited from linear
transformations.



Rigid Transformation

 Rotation + Translation

T(V) — RV —+ W where R is a rotation matrix.

* Preserves distances between all points
 Preserves cross product for all vectors



|Practice] Affine Transformation

def render (M, u):
¥ ...

glBegin (GL TRIANGLES)

glColor3ub (255, 255, 255)

glVertex2fv (M np.array([0.0,0.5]) + u)

glVertex2fv (M np.array([0.0,0.0]) + u)

glVertex2fv (M np.array([0.5,0.0]) + u)

glEnd ()

def main():

i
while not glfw.window should close(window) :

glfw.poll events()
t = glfw.get time()

th = t

R np.array([[np.cos(th), -np.sin(th)],
[np.sin(th), np.cos(th)]])

u = np.array([np.sin(t), 0.])

render (R, u)

it



Quiz #2

* Go to https://www.slido.com/
 Join #cg-ys
* Click “Polls”

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked for “attendance”.


https://www.slido.com/

Composing Transformations &
Homogeneous Coordinates



Composing Transformations

* Move an object, then move it some more
p—T(p)— ST (p) =(SoT)(p)

* Composing 2D linear transformations just works
by 2x2 matrix multiplication

T(p) = Mrp; S(p) = Msp
(S O T)(p) = MsMrp = (MgMyp)p = Mg(Mrp)



Order Matters!

 Note that matrix
multiplication is associative,

but not commutative.

(AB)C = A(BC)
AB # BA

« Asaresult, the order of P
transforms is very
Important.




[Practice] Composition

def main():
#
while not glfw.window should close(window) :
glfw.poll events()

S = np.array([[1.,0.],
[0.,2.11)

th = np.radians (60)

R = np.array([[np.cos(th), -np.sin(th)],
[np.sin(th), np.cos(th)]1)

u = np.zeros(2)

# compare results of these two lines

render (R S, u) # p'=RSp

# render (S @ R, u) # p'=SRp

#



Problems when handling Translation as
Vector Addition

« Cannot treat linear transformation (rotation,
scale,...) and translation 1n a consistent manner.

« Composing affine transformations is complicated

T'(p)=Mrp+ur (SoT)(p)=Ms(Mrp+ur)+us
S(p) = Msp + us = (MsMr7)p + (Msur + ug)

* We need a cleaner way!
==) Homogeneous coordinates



Homogeneous Coordinates

« Key idea: Represent 2D points in 3D coordinate space

 Extra component w for vectors, extra row/column for
matrices
— For points, can always keepw =1
— 2D point [x, y]" — 3D point [x, y, 1].

« 2D linear transformations are represented as:

.” 0] [z [a,x + by
c d 0] |yl = llcx+ d:
0O 0 1| |1 1




Homogeneous Coordinates

« 2D translations are represented as:

1 0 [¢] [= _:L‘l + tl
0 1 (s) |y| = |yl+s
0 0 I |1 ’

« 2D affine transformations are represented as:

linear part \[mll ml?] uﬁ]/ translational part

Moy TIa2 ) |Uy

0 0 1




Homogeneous Coordinates

« Composing affine transformations just works by
3x3 matrix multiplication

T(p) = Mrp+ur
S(p) = Msp + us

‘Mr ur Ms us
01 01




Homogeneous Coordinates

« Composing affine transformations just works by
3x3 matrix multiplication

0 1][0 1]]|1

(MsM7)p + (Msur + ug)
1

(SoT)(p) =

 Much cleaner



|[Practice] Homogeneous Coordinates

def render (M) :
...
glBegin (GL TRIANGLES)
glColor3ub (255, 255, 255)
glVertex2fv( (M np.array([.0,.5,1.1))[:-1] )
glVertex2fv( (M np.array([.0,.0,1.1))[:-1] )
glVertex2fv( (M np.array([.5,.0,1.1))[:-1] )
glEnd ()



|[Practice] Homogeneous Coordinates

def main () :
o
while not glfw.window should close(window) :
glfw.poll events()

# rotate 60 deg about z axis

th = np.radians (60)

R = np.array([[np.cos(th), -np.sin(th),0.],
[np.sin(th), np.cos(th),0.],
[O., 0., 1.11)

# translate by (.4, .1)

T = np.array([[1.,0.,.4],
[0.,1.,.1],
[0.,0.,1.1])

render (R) # p'=Rp

# render(T) # p'=Tp

# render (T @ R) # p'=TRp
# render(R @ T) # p'=RTp
...



Summary: Homogeneous Coordinates in 2D

« Use (x,y,1)" instead of (x,y)' for 2D points

e Use 3x3 matrices instead of 2x2 matrices for 2D
linear transformations

o Use 3x3 matrices instead of vector additions for
2D translations

« — We can treat linear transformations and
translations In a consistent manner!



Quiz #3

* Go to https://www.slido.com/
 Join #cg-ys
* Click “Polls”

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked for “attendance”.


https://www.slido.com/

3D Cartesian Coordinate
System



Now, Let’s go to the 3D world!

Ay A

» Coordinate system (ZtE4|)
— Cartesian coordinate system (& W ZHE A|)



Two Types of 3D Cartesian Coordinate Systems

What we’re using

- —

f

g \
Right-handed
Cartesian Coordinates

A

Z/C@@

= X

Left-handed
Cartesian Coordinates

Y
A

zZ

=X

ag)

Positive rotation

counterclockwise about the axis of

clockwise about the axis of

direction rotation rotation
X 3Ny 1 X
Used in... OpenGL, Maya, Houdini, DirectX, Unity, Unreal, ...

\

AutoCAD, ...

| Standard for Physics & Math y




Next Time

 Lab for this lecture (next Monday):
— Lab assignment 3

* Next lecture (next Wednesday):
— 4 - Transformation 2

Acknowledgement: Some materials come from the lecture slides of
—  Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cqi

—  Prof. Steve Marschner, Cornell Univ., http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml



http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

